Geometria Superiore: Superfici di Riemann

Lidia Stoppino

CdL in Matematica Magistrale, Università dell'Insubria, a.a. 2014/15

Esercizi ottobre 2014

- 1. Dimostrare le seguenti affermazioni.
 - (a) Sia $F \in \mathbb{C}[x_0, \dots, x_n]$ polinomio omogeneo. Se F ammette una scomposizione

$$F = GH$$
, con $G, H \in \mathbb{C}[x_0, \dots, x_n]$,

allora G ed H sono omogenei.

(b) Sia $f \in \mathbb{C}[t_1, \dots, t_n]$ di grado d, definiamo

$$F(x_0, x_1, \dots, x_n) := x_0^d f(x_1/x_0, \dots, x_n/x_0).$$

Verificare che F è un polinomio omogeneo di grado d. Verificare inoltre che f è irriducibile se e solo se F lo è.

- 2. Dimostrare le seguenti affermazioni sulle curve nello spazio proiettivo.
 - (a) Due rette (curve di grado 1) si intersecano in uno e un solo punto;
 - (b) Una retta e una curva Z(F) di grado d si incontrano in k punti, dove $1 \le k \le d$;
 - (c) Sia F è un polinomio omogeneo irriducibile di grado d e $p \notin Z(F)$. Allora le rette per p che intersecano Z(F) in meno di d punti sono un insieme finito.

Discutere quali di queste affermazioni sono vere per le curve affini.

- 3. Dimostrare che se due curve lisce proiettive $Z(F), Z(G) \subset \mathbb{P}^2$ hanno un numero infinito di punti in comune allora coincidono. Una possibile strategia è la seguente:
 - (a) Sia $S := Z(F) \cap Z(G)$. Osservare che per la compattezza di \mathbb{P}^2 esiste almeno un punto di accumulazione $p \in S$.
 - (b) Usare delle carte locali nell'intorno di p e il principio di identità delle funzioni analitiche (delle serie di potenze sugli appunti di Guarneri).

Cosa si può dire della stessa affermazione per le curve affini?

4. Sia C la curva affine in \mathbb{C}^2 data dagli zeri del polinomio

$$f(x,y) = 2x^3y^2 - x^4y - x^3 + 2x^2y + 4xy^2 - 8y^3.$$

- (a) Scrivere l'equazione della sua proiettivizzata Z(F) in \mathbb{P}^2 .
- (b) Trovare i punti singolari di Z(F).
- (c) La curva Z(F) è irriducibile? Se no, trovarne le componenti irriducibili.