Geometria I

Università dell'Insubria

Lidia Stoppino

Esercizi 2

a.a. 2017/2018

- 1. Sia $f:(X,\mathcal{S}) \longrightarrow (Y,\mathcal{T})$ una funzione tra spazi topologici.
 - (a) Dimostrare che se f è costante allora f è continua;
 - (b) Dimostrare che se \mathcal{T} è la topologia concreta allora f è continua;
 - (c) Dimostrare che se \mathcal{T} è la topologia discreta e \mathcal{S} è la topologia indiscreta allora f è continua se e solo se è costante.
- 2. Sia X un insieme non vuoto, siano \mathcal{T} e \mathcal{S} due topologie su X. Sia $f: X \to X$ l'applicazione identica $(f(x) = x \text{ per ogni } x \in X)$. Dimostrare che:
 - (a) $f:(X,\mathcal{T})\to (X,\mathcal{S})$ è continua se e solo se $\mathcal{S}\subseteq\mathcal{T}$;
 - (b) $f:(X,\mathcal{T})\to (X,\mathcal{S})$ è aperta se e solo se $\mathcal{T}\subseteq\mathcal{S}$;
 - (c) $f:(X,\mathcal{T})\to (X,\mathcal{S})$ è chiusa se e solo se $\mathcal{T}\subseteq\mathcal{S}$;
 - (d) $f:(X,\mathcal{T})\to (X,\mathcal{S})$ è un omeoemorfismo se e solo se $\mathcal{T}=\mathcal{S}$.
- 3. (Topologia indotta da una funzione sul codominio) Sia X uno spazio topologico con topologia \mathcal{T}, Y un insieme, e $f: X \longrightarrow Y$ un'applicazione. Consideriamo la famiglia di sottoinsiemi di Y

$$f_*\mathcal{T} := \{ A \subseteq Y \mid f^{-1}(A) \in \mathcal{T} \}.$$

- (a) Dimostrare che $f_*\mathcal{T}$ è una topologia su Y.
- (b) Dimostrare che f è continua rispetto a \mathcal{T} su X e $f_*\mathcal{T}$ su Y.
- (c) Dimostrare che $f_*\mathcal{T}$ è la più fine delle topologie su Y che rendono f continua.
- 4. Vero o falso? [se vero spiegate perché, se falso esibite un controesempio]
 - (a) Un'applicazione continua aperta e iniettiva $f: X \to Y$ tra due spazi topologici è chiusa.
 - (b) Un'applicazione continua aperta e suriettiva $f: X \to Y$ tra due spazi topologici è chiusa.
 - (c) Un'applicazione continua aperta e biiettiva $f: X \to Y$ tra due spazi topologici è chiusa.
- 5. Sia $f: X \to Y$ un'applicazione continua e \mathcal{B} una base per la topologia di X. Provare che f è aperta se e solo se f(A) è aperto per ogni $A \in \mathcal{B}$. Dimostrare (quindi esibire un controesempio) che l'analoga affermazione non vale per i chiusi: non è vero che se $f(X \setminus A)$ è chiuso per ogni $A \in \mathcal{B}$, allora f è chiusa.

- 6. Dimostrare che se $f: X \longrightarrow Y$ è un'applicazione biiettiva tra spazi topologici, f è aperta se e solo se è chiusa.
- 7. Fare un esempio di un'applicazione tra spazi topologici che sia:
 - (a) aperta e chiusa ma non continua;
 - (b) continua e aperta e non chiusa;
 - (c) continua e chiusa e non aperta.
- 8. Sia $f: X \longrightarrow Y$ un'applicazione aperta tra spazi topologici, e sia $S \subseteq Y$ un sottoinsieme denso. Dimostrare che $f^{-1}(Y)$ è denso in X (sugg: qui serve la "formula di proiezione" (Manetti Prop. 2.2): se in generale $A \subseteq X$ e $B \subseteq Y$ sono sottoinsiemi, vale che $f(f^{-1}(B) \cap A) = B \cap f(A)$).
- 9. Un'applicazione $f: X \longrightarrow Y$ si dice un *omeomorfismo locale* se per ogni $x \in X$ esistono due aperti $A \subseteq X$ e $B \subseteq Y$ tali che $x \in A$, f(A) = B e la restrizione $f_{|A}: A \longrightarrow B$ è un omeomorfismo.
 - (a) Dimostrare che un omeomorfismo è un omeomorfismo locale.
 - (b) Il viceversa non è vero: Dimostrare che l'applicazione $e: \mathbb{R} \longrightarrow S^1$ definita da

$$e(t) = (\cos 2\pi t, \sin 2\pi t)$$

è un omeomorfismo locale ma non un omeomorfismo.

- (c) Dimostrare che un omeomorfismo locale è un'applicazione aperta.
- (d) Dimostrare che le fibre di un omeomorfismo locale $f: X \longrightarrow Y$ sono sottospazi discreti di X.
- 10. Vero o falso? [se vero spiegate perchè, se falso esibite un controesempio]
 - (a) Siano $f: X \to Y$, $g: Y \to Z$ due applicazioni tra spazi topologici. Se nè f nè g sono continue g la loro composizione $g \circ f$ non è continua.
 - (b) L'inversa di una applicazione biiettiva non continua non è continua.
 - (c) Siano $f: X \to Y$, $g: Y \to Z$ due applicazioni tra spazi topologici. Se f non è continua e g è un omeomorfismo, allora $g \circ f$ non è continua.
- 11. Sia $(\mathbb{R}, \mathcal{K})$ la retta reale con la topologia cofinita (in cui gli aperti propri sono i complementari degli insiemi finiti).
 - (a) $f(x) = \sin(x)$ è una funzione continua da $(\mathbb{R}, \mathcal{K})$ a $(\mathbb{R}, \mathcal{K})$?
 - (b) Le funzioni polinomiali sono continue da $(\mathbb{R}, \mathcal{K})$ a $(\mathbb{R}, \mathcal{K})$?
 - (c) Esistono funzioni continue da $(\mathbb{R}, \mathcal{K})$ a $(\mathbb{R}, \mathcal{K})$ che non sono continue da $(\mathbb{R}, \mathcal{E})$ a $(\mathbb{R}, \mathcal{K})$, dove \mathcal{E} è la topologia euclidea su \mathbb{R} ?
 - (d) Esistono funzioni continue da $(\mathbb{R}, \mathcal{K})$ a $(\mathbb{R}, \mathcal{K})$ che non sono continue da $(\mathbb{R}, \mathcal{E})$ a $(\mathbb{R}, \mathcal{E})$?

12. Sia $(\mathbb{R}, \mathcal{T}_s)$ la retta di Sorgenfrey. Siano $f, g: (\mathbb{R}, \mathcal{T}_s) \to (\mathbb{R}, \mathcal{T}_s)$ le funzioni definite ponendo

$$f(x) := \left\{ \begin{array}{ll} x+1 \text{ se } x \geq 1 \\ x \text{ se } x < 1. \end{array} \right. \quad g(x) := \left\{ \begin{array}{ll} x+1 \text{ se } x > 1 \\ x \text{ se } x \leq 1. \end{array} \right.$$

Si discuta la continuità di f e di g.

- 13. Mostrare che le funzioni continue da $(\mathbb{R}, \mathcal{T}_e)$ a $(\mathbb{R}, \mathcal{T}_-)$ sono le funzioni f tali che per ogni $x \in \mathbb{R}$ $\forall \epsilon > 0 \; \exists \delta > 0$ tale che $\forall y \in (x \delta, x + \delta) \; f(y) > f(x) \epsilon$.
- 14. Manetti 3.47: esempio di omeomorfismo locale che non è un'applicazione chiusa.
- 15. Vero o falso? [se vero spiegate perchè, se falso esibite un controesempio]
 - (a) La chiusura di un sottospazio discreto è ancora un sottospazio discreto.
 - (b) Ogni sottospazio discreto di uno spazio topologico è chiuso.
 - (c) Ogni sottospazio discreto di uno spazio metrizzabile è chiuso.
 - (d) Un sottospazio finito di uno spazio topologico sempre discreto.
 - (e) Un sottospazio finito di uno spazio metrizzabile sempre discreto.
- 16. L'inclusione di un sottospazio S in uno spazio topologico X è aperta (risp. chiusa) se e solo se S è aperto (risp. chiuso).
- 17. Dimostrare che per ogni $a, b \in \mathbb{R}, a < b$ il sottospazio (a, b) è omeomorfo ad \mathbb{R} . Dimostrare che per ogni $a \in \mathbb{R}$ i sottospazi $(a, +\infty)$, $(-\infty, a)$ sono omeomorfi ad \mathbb{R} . Dunque questi sottospazi sono tutti nella stessa classe di omeomorfismo.
 - Dimostrare che anche i sottospazi [a,b), (a,b], $[a,+\infty)$, $(-\infty,b]$ sono omeomorfi ta loro, e sono omoeomorfe a $(\mathbb{R}, \mathcal{T}_e)$.
- 18. Dimostrare che due rette in \mathbb{R}^2 (con la topologia indotta da quella euclidea) sono sempre omeomorfe tra loro, e sono omeomorfe a $(\mathbb{R}, \mathcal{T}_e)$.