Geometria e Algebra	29 nevoso CCXXVII RF (terza decade, nonidì)
0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9	 ← Annerire le caselle per comporre il proprio numero di matricola. Durata: 1 ora. Vietato l'uso di appunti, libri, strumenti elettronici di calcolo e/o comunicazione (cell, smartphone,). Le domande con il segno ♣ possono avere una o più risposte corrette. Risposte gravemente errate possono ottenere punteggi negativi. Cognome e Nome: Sto ppino Lidia
Domanda 1 Dare la definiz	ione di lista di generatori di uno spazio vettoriale V . Fornire un
esempio di una lista di generatori di \mathbb{R}^3 che sia formata da 6 vettori distinti. \square \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R}	
una lista di generatori di una spazia	
rettoriale Ve un insieme joi, ve?	
di vettori di V tali che + v E V	
= a1, ax EIR tali the N=a1V1+a2V2++akVk	
	li, litez, litez) ei base canonico di IR3
Domanda 2 Sia $A \in M_R(3)$	ına matrice simmetrica 3 × 3. Sapendo che 3 e 7 sono <i>gli unici</i>
/=\	$\in \mathbb{R}^3 \mid x+y=y+2z=0$, determinare la dimensione e una base
autovalori di X e che $V_3 = \{\begin{pmatrix} y \\ z \end{pmatrix}$	
dell'autospazio V7. Giustificare la	
A simmetrica per le teorema spettrale equivale	
a dire che gli autospari di A generano 1R3 e	
sono mutuamente ortogonali. Dunque 3=dim 1/3 +dim 1/2	
$= 2 \operatorname{dim} V_7 = 2 \operatorname{base} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right\}$	

dipendenti.

Domanda 3 Sia $L: \mathbb{R}^3 \to \mathbb{R}^2$ lineare e tale che Ker $L = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x + 2y - z = x - y = 0 \}.$ Allora L non è né injettiva, né surjettiva. \Box L è biunivoca. L è suriettiva, ma non iniettiva. L è iniettiva, ma non suriettiva. Quale delle seguenti rette è ortogonale al piano π : x - y + z = 0? Domanda 4 **Domanda 5** Siano U e V sottospazi vettoriali di \mathbb{R}^5 ; sia dim U=2 e dim V=4. Quali delle seguenti affermazioni sono necessariamente corrette? $\dim(U+V) \geq 4$ 🌃 U e V non sono in somma diretta Domanda 6 Quale fra le seguenti affermazioni è corretta se si considera la seguente base di $\mathbb{R}^3 \colon \mathcal{B} = \left\{ \boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \boldsymbol{v}_2 = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, \boldsymbol{v}_3 = \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix} \right\}, \text{ e } \boldsymbol{u} \in \mathbb{R}^3 \text{ è tale che } [\boldsymbol{u}]_{\mathcal{B}} = \begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix}?$ non è possibile determinare u. $u \in \operatorname{Span}(v_1, v_2)$ $u = \begin{pmatrix} 3 \\ 5 \\ -11 \end{pmatrix}$ $u = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ Domanda 7 \clubsuit Stabilire quale delle seguenti espressioni q(x,y) corrisponde a una forma quadratica in R² definita positiva: $q(x,y) = x^2 + 4y^2 + 4xy$ $a(x, y) = 4x^2 + 4y^2 + 10xy$ $q(x,y) = 2x^2 + 2y^2 - 2xy$ **Domanda 8** \clubsuit Sia A una matrice 3×3 e siano A^1, A^2, A^3 le colonne di A. Se det A = 0, quale delle seguenti affermazioni è corretta? $\det(A^1|-A^2|2A^3) = 0.$ I vettori $\{A^1 + A^2, A^2, A^3\}$ sono linearmente dipendenti. I vettori $\{A^1, A^2, A^3\}$ sono linearmente in-È impossibile calcolare

 $\det(A^1 + A^2|A^2|A^3)$.