Soluzioni

Geometria I

CdL in Matematica

Università di Pavia

Prova scritta del 21 settembre 2021

Giustificare sempre le risposte.

1. [15 punti] Si considerino i seguenti 4 punti in $\mathbb{P}^2_{\mathbb{R}}$:

$$P_0 = [1, 0, 0], P_1 = [1, 1, 0], P_2 = [1, 1, 1], P_3 = [2, 0, 1];$$

- (a) Verificare se sono in posizione generale.
- (b) Scrivere l'equazione della retta r tra P_0 e P_1 , l'equazione della retta s tra P_2 e P_3 e trovare l'intersezione $r \cap s$.
- (c) Determinare, se esistono, tutte le proiettività f tali che $f(P_i) = P_i$ per ogni $i = 0, \ldots, 3$.
- (d) Determinare, se esistono, tutte le proiettività f tali che $f([1,0,0]) = P_0$, $f([0,1,0]) = P_1$, $f([0,0,1]) = P_2$, $f([1,1,1]) = P_3$.
- 2. [15 punti] Vero o falso? [se vero spiegate perchè, se falso esibite un controesempio] Siano $A, B \subseteq X$ due sottospazi di uno spazio topologico X.
 - (a) Se A e B sono aperti e $A \cap B \neq \emptyset$, allora $A \cup B$ è aperto.
 - (b) Se A è aperto e B è chiuso, allora $A \cup B$ è sia aperto che chiuso.
 - (c) Se A è compatto e B è compatto, allora $A \cup B$ è compatto.
 - (d) Se Ae Bnon sono connessi allora $A \cup B$ non è connesso.
 - (e) Se A e B sous connessie ANB + Ø, allora AUB e Connessu.

1) (a)
$$P_{\cdot} = [n_{\cdot}]$$
 $i=0,...,3$
 $N_{0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $N_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ $N_{2} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $N_{3} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$

Per venificare se scho in posizione generale controllo le se guenti due cose:

i) span $(n_{0}, n_{1}, n_{2}) = IR^{3}$

Quento e vero penche

1 1 1 1 = 1 \neq 0

1 1 1 1 = 1 \neq 0

1 1 1 1 0 0 1 1

ii) Schivo N_{3} como combinazione line are di n_{0} , n_{3} , n_{2} e controllo se i coefficienti sono non nulli:

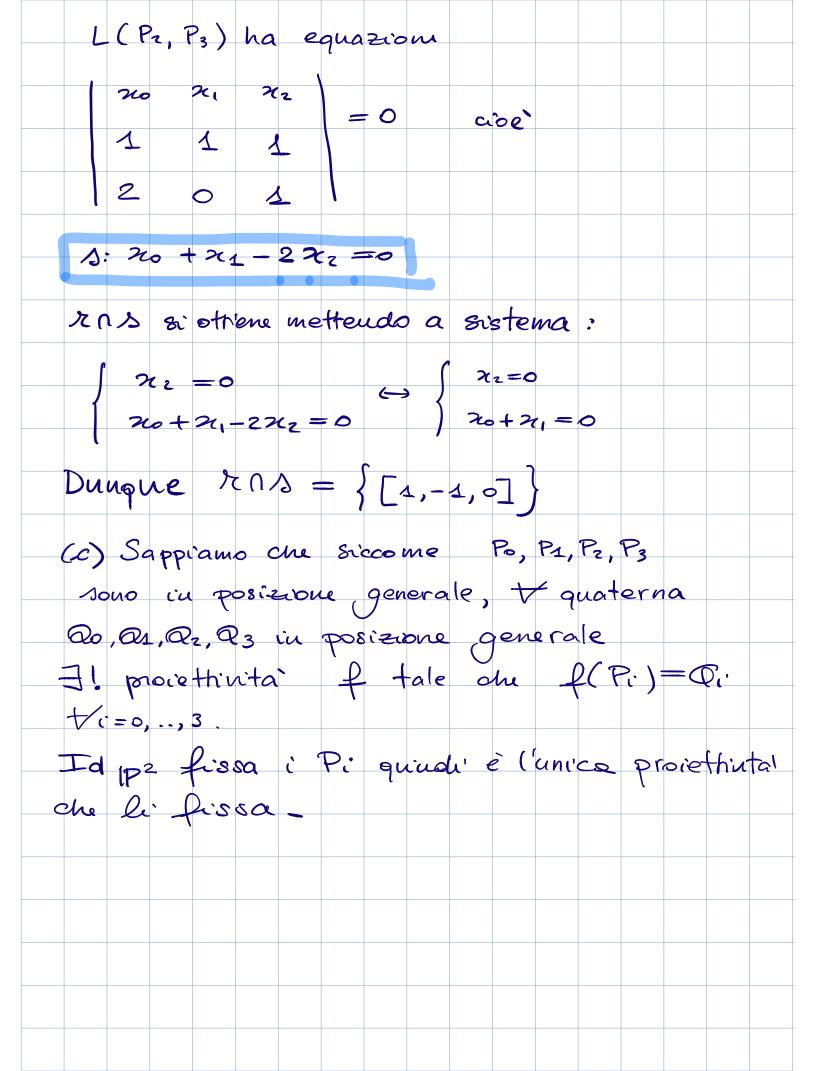
 $N_{3} = 2n_{0} - n_{1} + n_{2}$ que scho in posizione generale

(b) $L(R_{0}, R_{1})$ ha equazione

1 0 0

1 1 0 0

Cioè $R: X_{2} = 0$



(d) una projetività
$$f: |P_{1R}^{2} \rightarrow P_{1R}^{2}$$
 che soddi sfa $f(P_{1}) = [e_{1}]$ $\forall i=0,...,2$ e $f(P_{3}) = [e_{1}+e_{2}+e_{3}]$ e unica. Dare f equivale a trovare una matrice della forma $M = (l_{0}[v_{0}]_{B}|l_{1}[v_{1}]_{B}|l_{2}[v_{2}]_{B})$ dove (l_{0}, l_{1}, l_{2}) sono i coefficienti di v_{0} scritto come combinazione lineare di v_{0} , v_{1} , v_{2} : Quandi v_{0} (a meno di v_{0}) v_{1} (a meno di v_{0}) v_{1} v_{2} : v_{2} v_{3} v_{4} v_{1} v_{2} v_{2} v_{3} v_{4} v_{2} v_{4} v_{4} v_{5} v_{6} v_{1} , v_{2} v_{1} v_{2} v_{3} v_{4} v_{5} v_{5} v_{6} v_{1} v_{2} v_{3} v_{4} v_{5} v_{5} v_{6} v_{6} v_{7} v_{1} v_{2} v_{2} v_{3} v_{4} v_{5} v_{5} v_{5} v_{6} v_{7} v

2							
(a) Se 2	$A \in B$ so	no aperti	$e A \cap B$	$\beta \neq \emptyset$, al	$lora A \cup$	B è ape	erto.
Vero	Jun	na topo	ologia i	rale in	aenera	le on	
			U		/		
		ia qua				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
apert	a. Du	partic	olore «	questo.	è vero	per c	ma
coppi'a	oli a	perti.	A,BE	Tx,	indipend	le nte n	rente
dalla	secondo	a coudi	(2) onl	ANB	+\$.		
(b) Se 4	è aperto e	B è chiuso	allora A L	⊥R è sia ai	perto che c	niuso	
			, 	1 1			
Falso	: basta	preudere	i (IR,	Te)			
A = (0,1)	B = [1,	2]	AUB=	(0, 2]		
		Be' chiu				aper-	to ne
i i							
		teu bbe	che n	on fes	re ape	110 0	CIL
non f	osse c	houso)					
(c) Se $A \in \text{com}$	patto e <i>B</i> è	compatto, all	$ $ ora $A \cup B$ è	compatto.			
Vero -							
Sia	4	ricoprime	ento a	perto	di	40B	, Cube
		1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
		di'	aputi	7	ST,	(tal	che
VEI	4 2 A	UB -					
MET							
Ovviam	ente J	4 e uu	ncopr	imento	s aper-	to di	A
			· · · · · · · · · · · · · · · · · · ·		1		U k € X
	•		, I				
		ULU.					
Allo 8.	teno a	uodo	A è	ncopi	mento	aperto	odi B

