Geometria I

CdL in Matematica

Università di Pavia

Prova scritta del 9 luglio 2019

Giustificare sempre le risposte.

- 1. [12 punti] Vero o falso? [se vero spiegate perchè, se falso esibite un controesempio] Siano $A, B \subseteq X$ due sottospazi di uno spazio topologico X.
 - (a) Se A e B sono connessi e $A \cap B \neq \emptyset$ allora $A \cup B$ è connesso.
 - (b) Se A e B sono connessi e $A \cap B = \emptyset$ allora $A \cup B$ non è connesso.
 - (c) Se $A \in B$ sono connessi non vuoti tali che $\overline{A} \cap \overline{B} = \emptyset$ allora $A \cup B$ non è connesso.
 - (d) Se A e B non sono connessi allora $A \cup B$ non è connesso.
- 2. [10 punti] Si considerino in \mathbb{R}^2 i seguenti sottospazi:

$$X = \{(x,y) \mid (x^2 + y^2 - 1)(x - 1) = 0\},\$$

$$Y = \{(x, y) \mid (x^2 + y^2 - 4)(x - 1) = 0\},\$$

$$Z = \{(x,y) \mid (4x^2 + 4y^2 - 1)(x - 1) = 0\}.$$

- (a) Si stabilisca se sono compatti. Si trovino le loro componenti connesse.
- (b) Si suddividano in classi di omeomorfismo.
- (c) Si consideri la contrazione ad un punto del sottospazio di ${\cal Y}$

$$W = \{(x, y) \mid x^2 + y^2 = 4\} \subset Y,$$

 $\pi\colon Y\to Y/W.$ Stabilire se questo spazio è omeomorfo ad uno degli altri spazi(X,Y,Z).

3. [10 punti] Dato un sistema di riferimento cartesiano in un piano euclideo \mathbb{E}^2 si consideri la conica \mathcal{C} di equazione:

$$C: 2x^2 + 2xy + 2y^2 + y - 1 = 0.$$

- (a) Classificarla dal punto di vista affine e trovare l'equazione canonica. È una conica a centro? Se sì trovare le coordinate del centro.
- (b) Classificarla dal punto di vista euclideo: trovare la forma canonica e un cambiamento di coordinate cartesiane che la porta in forma canonica.
- (c) Scrivere l'equazione della chiusura proiettiva di \mathcal{C} in $\mathbb{P}^2_{\mathbb{R}}$, e trovare, se esistono i punti impropri.

1