References.
[1] G. Balsi, B. Klinger, E. Ulmo, On the distribution of the Hodge Locus, arXiv 2107.08838
[2] C. Birkenhake, H. Lange, Complex abelian varieties. Second edition. G W 302. Springer-Verlag, Berlin, 2004.
[3] J.B. Bost, Introduction to compact Riemann surfaces, Jacobians, and abelian varieties. From number theory to physics (Les Houches, 1989), 64211, Springer, Berlin, 1992.
[4] G. Ceresa, C is not algebraically equivalent to C− in its Jacobian. Ann. of Math. (2)117(1983), no.2, 285 – 291.
[5] A. Collino, G. P. Pirola, The Griffiths infinitesimal invariant for a curve in its Jacobian, Duke Math. J. 78 (1995), no. 1, 59 – 88.
[6] E Colombo, O. Martin, J.C Naranjo, G. Pirola Degree of irrationality of a very general abelian variety. Int. Math. Res. Not. (2022), no. 11, 8295–8313.
[7] M.D.T Cornalba, Lezioni su superfici di Riemann e tori complessi. available
here
[8] O. Debarre, Complex tori and abelian varieties, SMF/AMS Texts Monogr., 11, AMS Providence, Socie ́te ́ Mathe ́matique de France, Paris, 2005.
[9] G. Kempf, Complex abelian varieties and theta functions, Universitext Springer-Verlag, Berlin, 1991.
[10] V. Marcucci, On the genus of curves in a Jacobian variety, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), no. 3, 735–754.
[11] J. Milne, Abelian Varieties, available online.
[12] D. Mumford, Abelian varieties. With appendices by C. P. Ramanujan and Yuri Manin. Corrected reprint of the second (1974) edition. Tata Institute of Fundamental Research Studies in Mathematics, 5. Bombay; 2008.
[13] G. Pirola, Abel-Jacobi invariant and curves on generic abelian varieties. Abelian varieties (Egloff- stein, 1993), 237—249, de Gruyter, Berlin, 1995.
[14] R. Smith, The Jacobian variety of a Riemann surface and its theta geometry. Lectures on Riemann surfaces (Trieste, 1987), 350—427, World Sci. Publ., Teaneck, NJ, 1989.
[15] J. Tsimerman, Abelian Varieties are not quotients of low-dimension Jacobians, arxiv 2302.05860
[16] C. Voisin, Chow rings and gonality of general abelian varieties. Ann. H. Lebesgue 1, 313–332 (2018).